
Test Driven Development
in the iOS World

Part 1
Doug Sjoquist

http://www.sunetos.com
@dwsjoquist

Tuesday, August 16, 2011

mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com

What Is It?

Tuesday, August 16, 2011

Using automated software
tests to drive the design
and development of an
application iteratively by

writing your tests
BEFORE

you write your code
Tuesday, August 16, 2011

Why?

Tuesday, August 16, 2011

Tuesday, August 16, 2011

If our target is to
produce professional
level work

Tuesday, August 16, 2011

If our target is to
produce professional
level work

Then to hit
our target...

Tuesday, August 16, 2011

We
MUST

test our work

Tuesday, August 16, 2011

Automated
testing is the
best choice
for many

kinds of tests

Tuesday, August 16, 2011

Code must be
designed with

automated
testing in mind

Tuesday, August 16, 2011

TDD ensures
our code is

testable

Tuesday, August 16, 2011

TDD helps us
to only write
code we need

Tuesday, August 16, 2011

The hardest part is
not

writing automated
tests

Tuesday, August 16, 2011

The hardest part is
not

writing your tests first

Tuesday, August 16, 2011

The hardest
part is

deciding
what to test
and how to

test it

Tuesday, August 16, 2011

Automated testing is
THE key to ensure you
will test your code often

enough to make a
difference

Tuesday, August 16, 2011

TDD is THE key to
ensuring your code is

testable

Tuesday, August 16, 2011

It greatly enhances my
ability to do

professional level work

Why
TDD?The Bottom Line

Tuesday, August 16, 2011

So... How?

Tuesday, August 16, 2011

Continuum of Components
to be Tested

Tuesday, August 16, 2011

Continuum of Components
to be Tested

•No dependencies

Tuesday, August 16, 2011

•No dependencies

• Internal dependencies

Continuum of Components
to be Tested

Tuesday, August 16, 2011

•No dependencies

• Internal dependencies

•External dependencies

Continuum of Components
to be Tested

Tuesday, August 16, 2011

Continuum of Testing Types

Tuesday, August 16, 2011

Continuum of Testing Types

Tuesday, August 16, 2011

Continuum of Testing Types

Unit

Tuesday, August 16, 2011

Continuum of Testing Types

Unit

Integration

Tuesday, August 16, 2011

Continuum of Testing Types

Unit

Integration

GUI

Tuesday, August 16, 2011

Continuum of Testing Types

Frequency
Ease of use
Immediacy

Unit

Integration

Tuesday, August 16, 2011

Continuum of Testing Types

Brittleness
Complexity
Duration

Intrusiveness

Frequency
Ease of use
Immediacy

Unit

Integration

GUI

Tuesday, August 16, 2011

Our Tools

Tuesday, August 16, 2011

Our Tools

Tuesday, August 16, 2011

GHUnit

Our Tools

Tuesday, August 16, 2011

GHUnit

Our Tools

Tuesday, August 16, 2011

TDD Process

Tuesday, August 16, 2011

TDD Process

“Just Enough” Design

Tuesday, August 16, 2011

TDD Process

“Just Enough” Design

Development Iterations

Tuesday, August 16, 2011

TDD Process

“Just Enough” Design

Development Iterations

Review & Refactoring

Tuesday, August 16, 2011

TDD Process

“Just Enough”
Design

Tuesday, August 16, 2011

There is no
single answer

to how much is
“Just Enough”

Tuesday, August 16, 2011

Decide:
What is the

purpose of this
app?

Tuesday, August 16, 2011

Determine
what constitutes

“Done”

Tuesday, August 16, 2011

Do just enough
up front design to

get started

Tuesday, August 16, 2011

TDD Process

Development
Iterations

Tuesday, August 16, 2011

Decide what
behavior we want

to add next

Tuesday, August 16, 2011

Think about
a good way
to test it

Tuesday, August 16, 2011

Write a small
test that clearly
expresses our
expectations

Tuesday, August 16, 2011

Write
just enough

code that will let the test
compile, but still fails

because our expectations
were not met

Tuesday, August 16, 2011

Run the test
and watch it fail
so we know that
the test is being

exercised

Tuesday, August 16, 2011

Write or
modify

just enough code
to make the new

test pass

Tuesday, August 16, 2011

Ensure
all existing tests

still pass

Tuesday, August 16, 2011

TDD Process

Review &
Refactoring

Tuesday, August 16, 2011

Decide if
any code

needs to be
refactored

Tuesday, August 16, 2011

Handle each
refactoring
separately

Tuesday, August 16, 2011

Make
the

change

Tuesday, August 16, 2011

Run the
tests

Tuesday, August 16, 2011

When we are
satisfied with the
changes, AND

all the tests pass,
the task is
complete

Tuesday, August 16, 2011

We are never very far
from having working code,
however incomplete it is.

TDD
Advantage

The Bottom Line

Tuesday, August 16, 2011

App’s Purpose

Simple
Tic-Tac-Toe

Game

Tuesday, August 16, 2011

Think about
our minimum

feature set

Tuesday, August 16, 2011

Simple
Screen Mockup

Tuesday, August 16, 2011

Simple model

- Players
- GameBoard
- GameManager
- GameView (UIKit based)

Tuesday, August 16, 2011

Players

Just a String

Tuesday, August 16, 2011

GameBoard

Keep track of positions
Validate moves

Check for winner or draw

Tuesday, August 16, 2011

GameManager

Manage starting a game
Track the players and turns

Make computer’s move
Act as game controller

Tuesday, August 16, 2011

GameView

UIView with
UIButton and UILabel

instances

Tuesday, August 16, 2011

Time to
write some tests!

{cc000}
Tuesday, August 16, 2011

Where to begin
testing?

Tuesday, August 16, 2011

Create
TestGameBoard.m

Tuesday, August 16, 2011

// TestGameBoard.m

#import <GHUnitIOS/GHUnitIOS.h>

@interface TestGameBoard : GHTestCase { }
@end

@implementation TestGameBoard

@end

{cc007}
Tuesday, August 16, 2011

Tuesday, August 16, 2011

Our First Test

Tuesday, August 16, 2011

@implementation TestGameBoard

- (void) testValidMove_row0_col0 {
 GameBoard *gameBoard =

[[GameBoard alloc] init];

 [gameBoard movePlayer:@"playerA"
 row:0 col:0];

 GHAssertEqualStrings(@"playerA",
 [gameBoard playerAtRow:0 col:0],
 @"playerAt should return 'playerA'");

 [gameBoard release];
}

{cc002}
Tuesday, August 16, 2011

// Gameboard.h

#import <Foundation/Foundation.h>

@interface GameBoard : NSObject {
}

@end

{cc003}
Tuesday, August 16, 2011

// GameBoard.m

#import "GameBoard.h"

@implementation GameBoard

@end

{cc003}
Tuesday, August 16, 2011

// TestGameBoard.m

#import <GHUnitIOS/GHUnitIOS.h>
#import "GameBoard.h"

@interface TestGameBoard : GHTestCase { }
@end

@implementation TestGameBoard

...

{cc004}
Tuesday, August 16, 2011

// Gameboard.h

#import <Foundation/Foundation.h>

@interface GameBoard : NSObject {
}

- (void) movePlayer:(NSString *) player
 row:(int) row
 col:(int) col;
- (NSString *) playerAtRow:(int) row
 col:(int) col;

@end

{cc005}
Tuesday, August 16, 2011

// GameBoard.m
#import "GameBoard.h"

@implementation GameBoard

- (void) movePlayer:(NSString *) player
 row:(int) row
 col:(int) col {
}

- (NSString *) playerAtRow:(int) row
 col:(int) col {
 return nil;
}
@end

{cc005}
Tuesday, August 16, 2011

Tuesday, August 16, 2011

Tuesday, August 16, 2011

Not Just
Casual

Reassurance

Tuesday, August 16, 2011

Confidence in
our ability

to make changes

Tuesday, August 16, 2011

Allows us to
focus on one

thing
at a time

Tuesday, August 16, 2011

Tuesday, August 16, 2011

Resist the
temptation
to do more

than is
necessary!

Tuesday, August 16, 2011

Tuesday, August 16, 2011

You will be writing code
that does not yet have a

test to validate it

Tuesday, August 16, 2011

You will be tempted
to skip writing

the test for it later

Tuesday, August 16, 2011

You might split your
focus between too

many things

Tuesday, August 16, 2011

You will probably
write more code
than you need

Tuesday, August 16, 2011

Tuesday, August 16, 2011

K.I.S.S.
Tuesday, August 16, 2011

// Gameboard.h

#import <Foundation/Foundation.h>

@interface GameBoard : NSObject {
 NSString *player_;
}

...

{cc006}
Tuesday, August 16, 2011

// GameBoard.m
...

- (void) movePlayer:(NSString *) player
 row:(int) row
 col:(int) col {
 player_ = player;
}

- (NSString *) playerAtRow:(int) row
 col:(int) col {
 return player_;
}

...

{cc006}
Tuesday, August 16, 2011

Tuesday, August 16, 2011

Our Second Test

Tuesday, August 16, 2011

- (void) testTwoValidMoves {
 GameBoard *gameBoard =

[[GameBoard alloc] init];
 [gameBoard movePlayer:@"playerA"
 row:0 col:0];
 [gameBoard movePlayer:@"playerB"
 row:1 col:1];

 GHAssertEqualStrings(@"playerA",
 [gameBoard playerAtRow:0 col:0],
 @"playerAt should return 'playerA'");
 GHAssertEqualStrings(@"playerB",
 [gameBoard playerAtRow:1 col:1],
 @"playerAt should return 'playerB'");

 [gameBoard release];
}

{cc007}
Tuesday, August 16, 2011

Tuesday, August 16, 2011

// GameBoard.h

@interface GameBoard : NSObject {
 NSString * board_[3][3];
}

...

{cc008}
Tuesday, August 16, 2011

// GameBoard.m

...

- (void) movePlayer:player
 row:(int) row
 col:(int) col {
 board_[row][col] = player;
}

- (NSString *) playerAtRow:(int) row
 col:(int) col {
 return board_[row][col];
}

...
{cc008}

Tuesday, August 16, 2011

Tuesday, August 16, 2011

Let's take a step
back and review
where we are

Tuesday, August 16, 2011

// TestGameBoard.m

@interface TestGameBoard : GHTestCase { }
GameBoard *gameBoard_;
@end

...

{cc009}
Tuesday, August 16, 2011

...

@implementation TestGameBoard

- (void) setUp {
 [super setUp];

 gameBoard_ = [[GameBoard alloc] init];
}

- (void) tearDown {
 [gameBoard_ release];

 [super tearDown];
}
...

{cc009}
Tuesday, August 16, 2011

...

- (void) testValidMove_row0_col0 {
 [gameBoard movePlayer:@"playerA"
 row:0 col:0];

 GHAssertEqualStrings(@"playerA",
 [gameBoard playerAtRow:0 col:0],
 @"playerAt should return 'playerA'");
}

...

{cc009}
Tuesday, August 16, 2011

...

- (void) testTwoValidMoves {
 [gameBoard movePlayer:@"playerA"
 row:0 col:0];
 [gameBoard movePlayer:@"playerB"
 row:1 col:1];

 GHAssertEqualStrings(@"playerA",
 [gameBoard playerAtRow:0 col:0],
 @"playerAt should return 'playerA'");
 GHAssertEqualStrings(@"playerB",
 [gameBoard playerAtRow:1 col:1],
 @"playerAt should return 'playerB'");
}
@end

{cc009}
Tuesday, August 16, 2011

Tuesday, August 16, 2011

Squirrel!

Tuesday, August 16, 2011

// todo.txt

Tests to add:
- test that GameBoard detects moves outside
valid range

- test that GameBoard detects when a makes
an invalid move (selects a move already
made by a player)

- test that GameBoard to make sure only two
players can be used for a given game

{cc010}
Tuesday, August 16, 2011

It is critical
to Stay on

Target!The Bottom Line

Tuesday, August 16, 2011

What’s In Part 2?

•Deeper tests

•Components with dependencies

•OCMock usage

Tuesday, August 16, 2011

TDD in iOS
Coming soon: TDD/iOS tutorial series on

http://www.raywenderlich.com

Doug Sjoquist
http://www.sunetos.com

@dwsjoquist

Tuesday, August 16, 2011

mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com
mailto:dwsjoquist@sunetos.com

