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What Is It?
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Using automated software 
tests to drive the design 
and development of an 
application iteratively by 

writing your tests 
BEFORE

you write your code
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Why?
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If our target is to 
produce professional
level work
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If our target is to 
produce professional
level work

Then to hit 
our target...
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We
MUST

test our work
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Automated 
testing is the 
best choice 
for many 

kinds of tests
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Code must be 
designed with 

automated 
testing in mind
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TDD ensures 
our code is 

testable

Tuesday, August 16, 2011



TDD helps us 
to only write 
code we need
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The hardest part is
not 

writing automated 
tests
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The hardest part is
not 

writing your tests first
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The hardest 
part is 

deciding 
what to test 
and how to 

test it
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Automated testing is 
THE key to ensure you 
will test your code often 

enough to make a 
difference
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TDD is THE key to 
ensuring your code is 

testable
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It greatly enhances my 
ability to do 

professional level work

Why 
TDD?The Bottom Line
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So... How?
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Continuum of Components 
to be Tested

Tuesday, August 16, 2011



Continuum of Components 
to be Tested

•No dependencies
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•No dependencies

• Internal dependencies

Continuum of Components 
to be Tested
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•No dependencies

• Internal dependencies

•External dependencies

Continuum of Components 
to be Tested
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Continuum of Testing Types
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Continuum of Testing Types
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Continuum of Testing Types

Unit
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Continuum of Testing Types

Unit

Integration
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Continuum of Testing Types

Unit

Integration

GUI
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Continuum of Testing Types

Frequency
Ease of use
Immediacy

Unit

Integration
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Continuum of Testing Types

Brittleness
Complexity
Duration

Intrusiveness

Frequency
Ease of use
Immediacy

Unit

Integration

GUI
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Our Tools
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Our Tools

Tuesday, August 16, 2011



GHUnit

Our Tools
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GHUnit

Our Tools
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TDD Process
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TDD Process

“Just Enough” Design
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TDD Process

“Just Enough” Design

Development Iterations
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TDD Process

“Just Enough” Design

Development Iterations

Review & Refactoring
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TDD Process

“Just Enough”
Design

Tuesday, August 16, 2011



There is no 
single answer 

to how much is
“Just Enough”
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Decide: 
What is the 

purpose of this 
app?
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Determine
what constitutes 

“Done”
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Do just enough
up front design to 

get started
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TDD Process

Development 
Iterations

Tuesday, August 16, 2011



Decide what 
behavior we want 

to add next
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Think about
a good way
to test it
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Write a small
test that clearly 
expresses our 
expectations
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Write
just enough

code that will let the test 
compile, but still fails 

because our expectations 
were not met
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Run the test
and watch it fail
so we know that 
the test is being 

exercised
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Write or
modify 

just enough code 
to make the new 

test pass
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Ensure 
all existing tests 

still pass
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TDD Process

Review & 
Refactoring

Tuesday, August 16, 2011



Decide if
any code

needs to be 
refactored
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Handle each 
refactoring 
separately
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Make
the

change
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Run the
tests
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When we are 
satisfied with the 
changes, AND

all the tests pass,
the task is 
complete
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We are never very far 
from having working code, 
however incomplete it is.

TDD
Advantage

The Bottom Line
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App’s Purpose

Simple
Tic-Tac-Toe 

Game
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Think about
our minimum

feature set
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Simple 
Screen Mockup
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Simple model

- Players
- GameBoard
- GameManager
- GameView (UIKit based)
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Players

Just a String
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GameBoard

Keep track of positions
Validate moves

Check for winner or draw
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GameManager

Manage starting a game
Track the players and turns

Make computer’s move
Act as game controller
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GameView

UIView with 
UIButton and UILabel

instances
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Time to 
write some tests!

{cc000}
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Where to begin 
testing?
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Create 
TestGameBoard.m
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// TestGameBoard.m

#import <GHUnitIOS/GHUnitIOS.h>

@interface TestGameBoard : GHTestCase { }
@end

@implementation TestGameBoard

@end

{cc007}
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Our First Test
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@implementation TestGameBoard

- (void) testValidMove_row0_col0 {
    GameBoard *gameBoard = 

[[GameBoard alloc] init];
    
    [gameBoard movePlayer:@"playerA"
               row:0 col:0];

    GHAssertEqualStrings(@"playerA",        
      [gameBoard playerAtRow:0 col:0],
      @"playerAt should return 'playerA'");
    
    [gameBoard release];
}

{cc002}
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// Gameboard.h

#import <Foundation/Foundation.h>

@interface GameBoard : NSObject {
}

@end

{cc003}
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// GameBoard.m

#import "GameBoard.h"

@implementation GameBoard

@end

{cc003}
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// TestGameBoard.m 

#import <GHUnitIOS/GHUnitIOS.h>
#import "GameBoard.h"

@interface TestGameBoard : GHTestCase { }
@end

@implementation TestGameBoard

...

{cc004}
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// Gameboard.h

#import <Foundation/Foundation.h>

@interface GameBoard : NSObject {
}

- (void) movePlayer:(NSString *) player
                row:(int) row
                col:(int) col;
- (NSString *) playerAtRow:(int) row
                       col:(int) col;

@end

{cc005}
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// GameBoard.m
#import "GameBoard.h"

@implementation GameBoard

- (void) movePlayer:(NSString *) player
                row:(int) row 
                col:(int) col {
}

- (NSString *) playerAtRow:(int) row
                       col:(int) col {
    return nil;
}
@end

{cc005}
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Not Just
Casual

Reassurance
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Confidence in
our ability 

to make changes
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Allows us to
focus on one 

thing
at a time
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Resist the 
temptation
to do more 

than is 
necessary!
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You will be writing code 
that does not yet have a 

test to validate it
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You will be tempted 
to skip writing

the test for it later
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You might split your 
focus between too 

many things
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You will probably
write more code
than you need
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K.I.S.S.
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// Gameboard.h

#import <Foundation/Foundation.h>

@interface GameBoard : NSObject {
    NSString *player_;
}

...

{cc006}
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// GameBoard.m
...

- (void) movePlayer:(NSString *) player
                row:(int) row 
                col:(int) col {
    player_ = player;
}

- (NSString *) playerAtRow:(int) row 
                       col:(int) col {
    return player_;
}

...

{cc006}
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Our Second Test
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- (void) testTwoValidMoves {
    GameBoard *gameBoard = 

[[GameBoard alloc] init];    
    [gameBoard movePlayer:@"playerA"
               row:0 col:0];
    [gameBoard movePlayer:@"playerB" 
               row:1 col:1];

    GHAssertEqualStrings(@"playerA",        
      [gameBoard playerAtRow:0 col:0],
      @"playerAt should return 'playerA'");
    GHAssertEqualStrings(@"playerB",        
      [gameBoard playerAtRow:1 col:1],
      @"playerAt should return 'playerB'");

    [gameBoard release];
}

{cc007}
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// GameBoard.h

@interface GameBoard : NSObject {
    NSString * board_[3][3];
}

...

{cc008}
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// GameBoard.m

...

- (void) movePlayer:player 
                row:(int) row 
                col:(int) col {
    board_[row][col] = player;
}

- (NSString *) playerAtRow:(int) row 
                       col:(int) col {
    return board_[row][col];
}

...
{cc008}
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Let's take a step 
back and review 
where we are
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// TestGameBoard.m

@interface TestGameBoard : GHTestCase { }
GameBoard *gameBoard_;
@end

...

{cc009}
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...

@implementation TestGameBoard

- (void) setUp {
    [super setUp];

    gameBoard_ = [[GameBoard alloc] init];
}

- (void) tearDown {
    [gameBoard_ release];
    
    [super tearDown];
}
...

{cc009}
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...

- (void) testValidMove_row0_col0 {
    [gameBoard movePlayer:@"playerA"
               row:0 col:0];

    GHAssertEqualStrings(@"playerA",        
      [gameBoard playerAtRow:0 col:0],
      @"playerAt should return 'playerA'");
}

...

{cc009}
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...

- (void) testTwoValidMoves {
    [gameBoard movePlayer:@"playerA"
               row:0 col:0];
    [gameBoard movePlayer:@"playerB" 
               row:1 col:1];

    GHAssertEqualStrings(@"playerA",        
      [gameBoard playerAtRow:0 col:0],
      @"playerAt should return 'playerA'");
    GHAssertEqualStrings(@"playerB",        
      [gameBoard playerAtRow:1 col:1],
      @"playerAt should return 'playerB'");
}
@end

{cc009}
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Squirrel!
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// todo.txt

Tests to add:
- test that GameBoard detects moves outside 
valid range

- test that GameBoard detects when a makes 
an invalid move (selects a move already 
made by a player)

- test that GameBoard to make sure only two 
players can be used for a given game

{cc010}
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It is critical
to Stay on 

Target!The Bottom Line
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What’s In Part 2?

•Deeper tests

•Components with dependencies

•OCMock usage
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TDD in iOS
Coming soon: TDD/iOS tutorial series on

http://www.raywenderlich.com

Doug Sjoquist
http://www.sunetos.com

@dwsjoquist
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